Use of Software Components in Model Development

C.R. Maul
DNRE Tatura, Ferguson Rd, Tatwra VIC 3616, Australia (Christian. Maul@nre.vie.gov.au)

Abstraet: Software components do not stand alone but are designed to work as a indivisible part of a larger
application, They open new horizons for modelling as they offer stability, reusability and adaptability, They
can help to fill in gaps in modeliing, to create shorteuts where one’s own expertise or resources are lacking
and they allow for larger and more comprehensive models. Model or functional components are of great
interest o modellers, These could be mathematical, statistical, database and data manipulation components
or ones that deal with general hydrological problems. To make component development work they must be
useful and technical standards must be used, implemented and promoted. Even more important than issues
of standardisation are issucs of sound software engineering practices, Only when properly implemented do
components redeem the promise of reusability of code and only well-designed components can speed up the
development process considerably. Currently only a few languages such as Visual Basic, Delphi, Java,
Hiffel and Oberon provide any technical component standards. In this paper, issues associated with
component development, standards and engineering practice are described and discussed using the
meteorology component of “FruitSim”, a plant growth model, that I wrote in Java.

Keywords: Modelling; Climate; Software engineering; Java: Software components

1. INTRODUCTION www kigroup.cony/), Tidestone (http/fwww,
actuate.com’y or Roguewave (httpi/iwww.
stingray.comy}. The industry standard ensures that
they all work together satisfactorily. The typical
GUT is a mixture of compeonents produced by
different companies. Second generation
components contain both GUI and functional
capabilities such as Formula One from Tidestone.
It is a spreadsheet component with a visual part
for reporting and charting purposes and a non-
visual part that calculates, connects to databases,

Software components merge two distinci
perspectives: components as implementation of
soffware and components as architectural
abstractions. In the same way that builders use
standardised door frames, beams or other paris
from third parties to build a house, soltware
architects look for recurring patterns, functions or
processes that can be converted into building
blocks for an software application. A component

is: . L
and reads and writes Excel file formats.
e an opaque implementation of functionality For modelling purposes in particular, non-visual

that makes sense only i a larger application, components are more inferesting. They can be
mathematical components that realise neural
networks, Bayesian belief systems, matrix algebra
» conforms to a component model {Bachman et or a simple solution to linear equations. The next

al. 2000]. interesting class of non-visual components is that
which provides datzbase access or network
services such as file transfer protocol (FTD), email
OF ESSAgING Services,

s subject to third-party composition, and

The first components were GUI {graphical user
interface) components. For instance, fava’s user
interface, the Java Foundation classes, are realised

as components. Components can be bought from In addition to general purpose components such as
other companies such as IBM alphaworks those mentioned above, components that perform
(http://alphaworks.ibm.com/}, KL-Croup (http:// specific recurring tasks in hydrological models are

1671

possible, provided they conform io an agreed
mterface. Components and interfaces enable a
division in labour in modelling for the first time.
To demonsirate the sirengths, pitfalls and
ramifications of design decisions on component
development, the meteorclogy component of
“FruitSim™ is used. Using existing progranl paris
for component development is the best way tfo
design components because use precedes reuse.

2. METHODS

2.1 Assessment Criteria

Criteria against which components should be
assessed are:

1. the ability to configure the properties of the
component, such as simple and bounded
properties, constrained and index properties;

2, the ability to react to events;
3. sufficient documentation on three levels

ay Introspection for wse with the IDE
{Integrated Development Environmest),
which means that the IDE actively looks
into the component and displays all the
available methods and their correct use

b) component usage description for the user
- developer such as Beanlnfo in
favabeans (see htp:/fjava.sun.comy/
12se/1.3/docs/apl/index. html) and

¢) detailed documentation of the component
interface such as the HTML
documentation generated by the JavaDoc
tool;

4. safe use of the component inchuding error
handling and instantiation;

5. customiser for correct use and instantiation of
Components,

6. persistence of the component or ohjects of the
component; and

7. pre- and post-conditions for compaonent use;
8. packaging standards.

These crteria are based on Pelegri-Llopart and
Cable’s [1977] and my own experiences as a user
and producer of components.

A component designed to provide meteorology
data for FruitSim will be assessed using these
gight criteria.

1.2 *Fruitsim” Meteorology Component

“FruitSum” is a tree growth model that calculates
yieid, water use and growth dependent on climate
and ranagement varizbles. Climate variables
drive the model in its daily calculations. Because
some values needed to run the program are not
always provided by the METACCESS database,
the meteorolozy component caleulates the missing
mformation. It comprises four classes:
WeatherEvents, AirPropertics, Climate and
SoilProperties.

WeatherEvents is a rather dumb data container
which consists of encapsulated variables
{properties} with their public methods for access
and modification. The only function that requires
some intelligence is the manipulation of dates, that
is, the conversion of date sirings to Julan day,
determining day of the year depending on
hemisphere, that is the start of the growing seasomn,
and taking into consideration time zanes.

AilrProperties inherits all the metheds from
WeatherEvents and has some methods of its own
such as calculation of day length, twilight length,
houtly temperature and degree day calculation. It
fires an event if the date is changed and initialises
the values such as day length, declination or sun
angle accordingly.

The third class, (limate, inherits from
AlrProperties, which means that it comprises the
functions of both previous objects. It extends the
functionality to caleulations of radiation and the
sun’s position. It overrides the propertyChange()
method of AirProperties and configures the
previously described attributes and the radiation
attributes, Events are used in two different ways:
if variables within the object are changed that
have other dependent variables, events are fired to
notify these dependent variables and to change
them accordingly. Secondly, events are also fired
to the outside world. They can be picked up by
any other object that has a
PropertyChangeListener registered. Through this
mechanism the component can be integrated into
any program, because any obisct yet to be created
simply needs to register a listener. It will then he
notified immediately and can change its
processing accordingly.

1a72

QL_“I Weatrherfvants

imate

Figure 1. Class diagram of the meteorology componant containing the properties of the classes.

SoilProperties calculates soil temperatures. Figure
1 shows a class diagram of the four classes and
their propertiss. More detailed information can be
found i Maul [1999].

Eighty seven propeities represented by variables
can be set or gueried. The vanables themselves are
hidden either completely by defiping them as
private or partially by defining them as protected
which prevents direct access,

A Beanlnfo class provides information about fhe
properties, their possible values and events for the
IDE so that it can guide the user.

Apart from the Beaninfo class the JavaDec
documentation may be used to determine what
each method does and the scientific basis of the
particular algorithms.

Further support could be given by PropertyEditors
which define ranges of values for variables when
the component 13 used in an IDE. They are,
however, not implemented in this example.

A customiser class which must be registered with
the Beaninfo class could provide sensible values
for properties, Technicalities, such as the use of a
double as a parameter when it 18 required, could
be forced upon the user by the compiler and the
customiser could determine if a parameter makes
sense when the parameter is dependent on another
variable. Customisers are nol implemented with

the resull that all values that are passed on o the
congirucior must be valid,

3. ASSESSMENT

Jow does the component tale against the eight
assessment criteria”?

There s certainly an abundance of set properties
[criterion 1), the component is event driven
{eriterion 2 and it conforms w the Java packaging
standard (criterion 8 and 3a). All public methods
are documented {(criterion 3¢k Because the emror
handling is done elsewhere in the program in
which 1t i3 used, thers is no error handling in the
companent {fails criterion 4). This is definitely 2
weakness. The component expects to be initialised
with sensible date for month, day, temperatures
and so on {crilerion 3).

The component implements the ‘Serizlizable’
interface, which means it can be stored {criterion
&3,

Pre- and post-conditions {criterion 7) cannot be
defined i Java. This is one of the major
weaknesses of the langusge. Its first standard did
contam pre- and post —mnditians but it has since
been abandoned by Sun [Coad and Mayhield,
1998,

1673

WeatherEvaents

+Heatharfvents

Fin

tdul ianbay:void

wzetJulianhay froamio0000

Cﬁ AjrPropartias

+etHourly

+aetlegres

“armah3toing

2hguble:double

+suniltilforma

+E131Currn

+meanTemprdos

+meanTenp

ourfemparray:doub

C“] SoilPreperties

iloempidoubie

inivenpdonbla
nimumdouhlie

imum:aouhle

provide climave data

Climate

2rrRadperiouriduublel]

+Llancg) Trdoubie

+] 2ToJoulepercdZ - double

GUEEY e rdoub] e

suble

itviveid

ransmiss
Transmissivity:vold

+caleiulianbay:doukle

rserExtTerrRadperday :void

Elklst thegreshatZrad:double

+aetExtTerrRadpertour::void

+convertDecimal Hours ring

+hourlvsunPesition:veld

+heurly3unPosicion:veid

inavion:void

BT

ylenarh:void

AstRadperbay:void

Figure 2. Class diagram of the meteorclogy component containing methods.

In this light the disadvantage of missing error
handling has twice the impact because there are no
safeguards against improper use. Pre- and
postconditions could be used to enforce proper
instantiation in particular.

A component can be a good component in theory
but utterly useless in practice for programs. Figure
2 shows what you can actually do with the
cormnponent,

It is not much if you only create a WeatherEvents
object. You can converi date sirings. An

Alrproperties object provides greater functionality

sauch as calculating hourly temperatures from
minimum and maximum temperatures, solar noon,
sunset and sunrise, different kinds of twilight and
daylength.

Climate extends the functionality of AirProperties
as it contains many methods to calculate values of
sun position at any real or solar time,

extraterrestrial and ground radiation, humidity and
vapour pressure. Apart from date, latitude and
temperature most of the wvariables in the
component can be set either from a database or
caiculated with different aigorithms. Despite the
naming convention of methods such as
hourfytemp{) the component can caleniate any
time resolution of radiation or temperafures
because the time values are passed on as doubles.
The component also provides converting and
formatting methods. It is quite a powerful
component that can generate a lot of values from a

minimal dataset. Calculated values are certamnly

not as good as measured data but the JavaDoc
explains the algorithms and restrictions.

The component is designed to provide values that
are not provided by a particular weather station or
the Australian Meteorology database, MetAccess.
Its database structure, however, is similar to many
other databases in the worid. The component

1674

could be used with nearly any other weather
database.

Yalues that can be both calculated and set must be
set after methods are called which fuwe events and
calculate them automatically to preveni values

being overwritten. This important order of

initialisation would be a classical application for
pre-conditions {criterion 7).

Three constructors provide safety and flexibility
{criterion 4) for how the componemt is
instantiated. There is a parameterless censtructor,
Climate{), to ensure that a climate object can be
created using the Beans.instantiate{) method from
Java. The Java specification reguires the user -
developer to do so. T am, however, not convinced
that this has bean a good design decision because
it lzaves it to the user to initialise properly. If he
fzils to do so the program in which the component
resides will not crash but it will be provided with
“default” values. They wil not make sense
because the user wants to have data at a particular
location at a particular day and time and not in
Greenwich on the first of January at midnight.

4. DISCURSION

The component described above does meet many
of the assessment criteria. However, it falls down
i two greas.

The first is the lack of appropriate error handling
which is a significant weakness and reduces its
industrial strength. Error handling is an important
issue for the wuse of components. Many
programmers have endured the painful experience
of debugging function libraries or of using
msufficiently documented function libraries.
However, components contradict sound software
engincering practices in this regard which demand
a separation of the functional fayer, error handling
and graphical user interface.

The second is initialisation. Components are
supposed to be safe, to come with their own
manual and to enforce appropriaie creation and
initialisation. The meteorology component
certainly has a manual which explains its use.
However, the component itself does not prevent
improper itialisation.

The design and implementation of the component
have many strengths. Integration into other
programs is simple because the component can be
queried by [DE about its methods and properties.
It is highly independent of the rest of the program
becanse it simply requires the instantiation of a
PropertyChangeListener that is registered with the

component. A propertyChange{) method must
then query where the propertyChangeBvent is
coming from and change the processing logic
according to the changed climate data. The
component makes good use of the flexibility
provided by the Java standard.

Overriding methods can easily change the climate
component. The interface that the component
implements allows for the exchange of the entire
component within existing programs. Extension is
as easy as change because any new object can
inherit from Climate and add new properties and
methods.

The component standard can be used to share
programming between institutions. The model is
then finally assembled as a collection of black
boxes that conform to a design agreed to at the
start of the project.

There is a plethora of components conceivable.
They can facilitate and speed up model
development that clearly distinguishes tasks,
separates groups or institutions and defines the
responsibilities and duties of partners. Equally
important as the use of component standards is
proper project management. Ooly then can
compenents deliver on their promises and lead to
successfid collaboration because they also allow
for — and this is very important in science — a clear
separation of merits.

5 REFERENCES

Bachman, F., I, Bass | L., Buhman, C., Comella-
Diorda, S, Long, F., Robert, J., Seacord, R,
K., Wallnaw, Technical Concepts of
Component-Based Software Ingineering,
Carnegie Mellon Software Instimute htp:/
www.sel.crmuedu/publications/docoments/
00, reports/Cor008/0050081itle. html, 2000,

Coad, . and M. Mayfield, Java Design, 2nd ed
Yourdon Press, Upper Saddle River, NI, US,
1998,

Maul C.R., What would a reuseble meteorology
component for environmental models look
like? Frvironmental Software Systems,
Denzer, R. et al. {eds.), Vol. 3, pp 88-94,
Kiuwer, Amsterdam, NL, 1999,

Pelegri-Llopart, E.and L., P., G. Cable, How 1o be
a Good Bean. Sun Microsystems, JavaSoft,
Palo Alto, Ca, US, http:/fjava.sun.cony
products/javabeans/docs/goodbean pdf,
1977.

1675

1678

